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Babuska and Gh have introduced a new approach called the method
of auxiliary mapping (MAM), 1o deal with elliptic boundary value
problems with singularities. They showed that for the Laplace equation
with corner singularities, in the context of the p-version of the finite
element method, MAM yielded an expanential rate of convergence at
virtually no extra cost. in this paperthoseresults are extended by showing
the exponential convergence of MAM for homogeneous Laplace
equations with boundary singularities and Helmholtz equations with
both corner and boundary singularities. In addition a convergence
result is developed for MAM as applied to the A-p version of the finite
element method. To clarify the power of MAM a series of benchmark
runs are made for three examples using our implementation, MAPFEM.
Comparisons are made with two h-version finite element codes
(PLTMGS6 and FESOP), both of which use adaptive meshes, the finite
difference code ELLPACK, and the recent singular element code
ISBFM. The examples include the well-known Motz problem and both
homogeneous and nonhomogeneous Helmholtz equations.  © 1992

Academic Press, Inc.

1. INTRODUCTION

Recently Babuska and Oh [6] introduced a new
approach, called the method of auxiliary mapping (MAM),
to deal with corner singularities. In this paper we make
several extensions of MAM, one of which is to include
boundary singularities for a more general set of elliptic
partial differential equations. The essence of this method
involves locally transforming a region around each
singularity to a new domain by use of a conformal mapping
such as & = ¥(z)=z". Here f is directly determined by the
known nature of the singularity in such a way as to locally
transform the exact (singular) solution to a smoother or
even locally analytic function, which can be easily
approximated in the new domain by the conventional use of
the p-version of the finite element method. For example,
consider a strong singularity about the origin in the upper
half plane of the form r'7f(r, @), where [ is smooth. Then

* This work of this author was supported in part by NSF Grant
ASC-9113895.
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¥(z)=z"? maps the upper half plane into the first quad-
rant, and a point {p, ¢) in the first quadrant evaluates as
of (9%, 2¢), a smooth function. Thus, MAM allows for the
use of ordinary basis functions in the mapped region
to approximate a smooth form of the original singular
solution.

To further understand the effect of MAM, let Q=
{(r,0):r <L, 0<8<n/4). Then #(2)={(p, ¢):p < /L,
0<¢<n/8} and through the auxiliary mapping ¥ the
standard elemental shape functions N - on ¥(£2) become
singular functions N, on Q. Furthermore, if we consider the
basis functions of p-degree 10 over ¥(£2), the singular
functions created over @ through the mapping ¥ restricted
to the positive x-axis are generated by {1, x'% x,
x¥2, .., x*2 x*}. That is, MAM implicitly creates special
singular basis functions which mimic the singularity.
However, unlike other singular function approaches, MAM
is not required to construct or use singular basis functions
in actual computations.

In [6], Babuska and Oh showed that MAM in the con-
text of the p-version of the finite element method yielded an
exponential rate of convergence at virtually no extra cost,
developed requirements for a general auxiliary mapping,
and showed that a typical homogeneous problem with a
corner singularity converged at an exponential rate. They
also discussed a nonhomogeneous problem with a corner
singularity, showed that the convergence was proportional
to a power of the degrees of freedom N, and considered an
application to elliptic problems on unbounded domains. As
a part of a further investigation of MAM (for problems with
a different structure of singularities such as those in
elasticity), they showed i1 [31] that MAM could success-
fully improve the worst singularities arising from interface
problems by a suitable choice of auxiliary mappings.

This paper is organized as follows. In Section 2, we
give a general description of MAM. Here we include a
general result on how to compute the bilinear form related
to the elliptic equation on mapped regions. In Section 3,
MAM is shown to converge exponentially for both Laplace
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and Helmholtz operators with combinations of corner and
boundary singularities. The forcing term f, if present, is
assumed to be locally zero near the singularities. For full
exponential convergence using the Heimholtz operator, cer-
tain restrictions on the angle of the corner singularities are
imposed, although greatly improved results are obtained in
any case, In addition a convergence result is developed for
MAM as applied to the #-p version of the finite element
method. In Section 4 we clarify the power of MAM with a
series of benchmark runs for three examples using our
tmplementation, MAPFEM. Comparisons are made with
two h-version finite element codes (PLTMG6 and FESOP),
both of which use adaptive meshes, the finite difference code
ELLPACK and the recent singular element code ISBFM
[29]. The exampies include the well-known Motz problem
and both homogeneous and nonhomogeneous Helmholtz
equations. We use the results of [24, 267 for our benchmark
comparisons with the Motz problem, after discovering a
correction to the value of one of the published coefficients.

In elliptic boundary value problems, singularities are
caused by nonsmooth geometric boundaries (corner
singufarities), by discontinuities in the coefficients of the
partial differential equations (interface singularities), or by
changes in the type of boundary conditions such as from
Dirichlet to Neumann (boundary singularities). These

problems are notable for their difficulty [5, 7, 13, 18, 24-26,.

29, 31, 35, 37-407). Tt is well known that the standard finite
element and finite difference methods have problems in
providing accurate numerical solutions at a reasonable
cost for elliptic boundary value problems containing
singularities. Many different approaches have been
attempted over the years to provide accurate and economi-
cal solutions. The two principal approaches of the past have
been mesh refinement [2, 5, 7, 9, 19, 207 and the use of
special singular basis functions [1, 13, 21, 22, 24-26, 29,
33-357. Qur results, both theoretical and in practice, show
that MAM combines the best features of both of these
approaches, providing the accuracy of singular elements but
with the convenience and economy of a nonadaptive mesh.
Moreover, MAM is an essentially local methoed, using a
separate mapping for each singular region.

2. NOTATION AND BASIC RESULTS

2.1. Results for General Elliptic Equations of Second Order

Througheut this paper, 2 and 2* will denote simply con-
nected bounded domains of the usual Euclidean space R’
I'= 39 denotes the boundary of 2 and Q= I}, I,
are open line segments called edges. Let ¥: £ —» Q2% be a
bijective mapping. We will denote the Jacobian of ¥ by
J(¥), and its determinant by [J(¥)|. Although we focus on
the Laplace and Helmholtz operators in this paper, the

mapping technique can be extended to general elliptic
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operators. Thus, we start with the following elliptic
boundary value problem:
— L) tau=f ing, (n
u=0  only, {2)
é
Z=h only, (3)
on,

where &= Z(G/ﬂxj}(a (x)(@/asc 3} is strongly elliptic,

dufon.=3 a,(x) v,(Cu/dx,) is the conormal derivative,
Fpul'y =00, aUBO, ag(x)e L,(2), ay(x)el,(Q),
feLA(Q), he L*(I'y).

Let H'(Q2) be the usual Sobolev space and H}(£2)=
lue H'(Q):u=0o0n I',}. For u, ve H'(Q), we let

Su @
7 dx. ;Ox

mmw:L{Z

v
+a0uv} dx

Flv)= jﬂ fodx + L ho dy.

By the exact solution of (1)-(3), we mean ., & H },(£2) such
that
B(u, v) = F(v) forall ve HL(RQ). 4
Let us denote Bix, u) by |zl and the energy norm by || - .
It was shown in [12] that if the measure (£} > Othen ||| ¢
is equivalent to ||- || ;i q, 00 H ().
Consider a bijective mapping ¥: 2 — 2* and for any
u: 2 — R, the related function fi=wu-¥ ~'; 2* - R More

generally we denote J(¥)e ¥ ! by f(?’j The following
theorem shows how to compute the bilinear form related to
an elliptic operator over the mapped functions # and £ in
*, This result is useful not only for the results of this paper
but also in the applications of MAM to more complicated
singularity structures such as three-dimensional problems
[30] or interface singuiarities.

THEOREM 2.1. Let W: Q2 — Q% be a bijective mapping.
Suppose q,, denotes the (k, [)-component of the symmetric
matrix,

S o~

Q=¥ I)H¥) La (3] -J(¥), (5)

where ay(x)e L,(82) for all i and j. Then for any u, v in
H () and corresponding functions t=ue ¥ ', 6 =ve ¥ 7,

du dv du Ov
LZ%( ax, ox, f L9al8) 37 50
where q,,(E) e L_{Q%).
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jvu [ay(x)]-Vo©

1 #3

| Va-g0p)-Lay(0)1-Jep)T VT
2

s
L_ (P 1) Vi J(‘P) [a,()]-J(¥)" - V5"

on ot

j Z%r(‘f)a, 651 Q.ED,

CorOLLARY 2.1, Suppose Q and Q* are domains in R,
If ¥ is a conformal mapping, then we have

Vi - Vi dé.

.[ Vu-Vvdx=J. (6)

2 Q*

Proof. Since ¥ is conformal, the coordinate functions of
¥ satisfy the Cauchy—Riemann equations. Hence, a direct
calculation shows that J(¥) J(¥)"=|J(¥)| -1, where I
denotes the identity matrix. Hence by Theorem 2.1,
Q=|J(¥ Y JP) I .J(¥)" =TIgivingtheresult. Q.E.D.

2.2. The Method of Auxiliary Mapping

From now on, we will consider the two-dimensional
model problem

—du+tagu=f on 2 (N
u=0 on Ip=1) T, (8)
ie?
du —
5—/1 on ]"N:igr I, (9)
8 = mw,
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where aq is a nonnegative real number, 2 = R” is a bounded
polygonal domain whose boundary I is composed of open
straight line segments I, with J I;=1, @ and A are
disjoint, fe L(2), and he L*([ ). il a,=0, the left-hand
side of (7) is the Laplace operator while if @, >0 it is the
Helmholtz operator.

Suppose that the exact solution w., of (7)-(9) has a
boundary singularity (caused by a change from a Dirichiet
to a Neumann boundary condition, as shown in Example A
of Section4) or corner singularity at the vertices A,
g=1,..5

Throughout this paper, nes, denotes the internal angle of
the vertex of a singular point 4, (se¢ Fig.2.1) and Q =
{z:]z— A4, <r,} n 8 denotes a singular neighborhood of
A, of the form of a circular sector in £2. It will be assumed
that A=0 along I'yn 2, and f=0 on 2, for all ¢
corresponding to singular points 4.

Now, for any positive @ we would like to introduce a
conformal mapping ¥, Q — 0% which will play an
essential role throughout this paper:

—1 X, _ fa
¥ oi=phz=L(7 where

I=Xx;+ix,ef ,

=& +ik, Q7. (10)
The determinants of the Jacobian of ¢* and its inverse ¥,
are

2 2x—1) i
L]

2(1—a)ya
a’p =7 .

respectively, Here (r, #) denotes polar coordinates in 2, and
(p, ¢} denotes polar coordinates in QF = ¥ _(2,).

Now it can be easily shown that the form of the exact
solution u, on £2, for sufficiently small r is of the form of
either

Heo= 3. bypr*ssin(kb/w,)

k=1

(11)

¢ = muwy/a,

$=0

A4

Tq

FIG. 2.1.
and the corresponding mesh 7, on €2, .

-
L4

(rq) 1/ey

A singular neighborhoed £, of a singular point A, and its mapped domain £2* under the mapping ¢ . The scheme of mesh 7§ on Q23
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or

=Y, bpr®* V2 cos((k + 172) B/w,)

k=0

(12}

in the case of g, =0 (Laplace operator), according as A, 1s
a corner singularity or a boundary singularity. If a,>0
(Helmholtz operator), the respective equations are

Her = 3. bidis faor) sin(kt/om,)

(13)
k=1
or
Uex = Y Bty oy faor) cos((k +1/2) Bfw,),  (14)
k=0
where
PR 2f.2
agF agr
I =2 S
ldor) ( 2) 204’1!r(1+1+/:)

is the modified Bessel function of the first kind of order A.
We now describe the method of auxiliary mapping:

Step |.  Selection of singular regions. For each
singularity 4, choose a singular neighborhood of the form
of a circular sector:

Q,={zlz-4,l<r,}nQ.

The size of the radius r, is restricted so that # is zero along
I'm 32, and fis zero on £2,. If possible, it is desirable to
choose a larger radius to avoid the poliution effect on
£\, caused by the singularity at A4, but not so large that
d=uo¥ ' fails to be analytic on Q}.

Step 2. Construction of auxiliary mappings. Let ¥ :
Q,— Q7 be a conformal mapping defined by an integer m,
and the number w,:

q[ —1 = (pmqluq:z — émqruq.
o

(15)

The integer m, must satisfy two requirements: m,w, > 1
(required by Lemma3.l) and if A4, is a boundary
singularity, m, 1s even, ie, of the form m, =2n,. Let us
recall that mew, is the interior angle at A ,. Then the auxiliary
mapping defined by (15) transforms u,, on 2, of the forms
(11)}-(14) into f =u, o ¥ ' on 2F of the forms

by p*™e sin(m, ke),

by p T " cos(n 2k + 1) @),

LUCAS AND CH

%) ko
ao ¢
b = P king
2 b3
2imywy

i ay'p
E AT+ + kjw,)

@ ag\ o+ Ve,
im0 (2] e
k=0

x

]sin (mk¢), (1)

o 2 A,
| £ s s )
S ¥ T+ L+ (K + 12Yo,)

xcos(n,(2k + 1)), (19)
respectively. Let us note that for sufficiently small p, i,, in
(16)and (17) is analytic; #., in (18) and (19) is also analytic
for a suitabie choice of m,, provided that w, is a rational
number. If w, is an irrational number, 4., in (18) and (19)
cannot be analytic, but will be highly regular. In practice, we
will choose m, in (16) and (18) and n, in (17) and (19) to
be the smallest integer such that m,w, > 1. It was shown in
[6] that MAM with m, > 1 yields highly improved results
when basis functions are of higher order. The success of an
application of MAM depends critically on finding mappings
¥,, such that &, is smoother.

Step 3. Construction of mesh. Subdivide Q into triangles
and rectangles so that, for each singular neighborhood 2,
082, consists of sides of elements. Let us note that curves are
allowed for interior sides in a mesh for the p-version of the
finite element method (see Fig. 2.1 or Mesh I in Fig. 4.1).
More precisely, for each 2, generate a triangulation 7} of
£2* and generate a triangulation &, on £ as the image of
¢ under ¥ ~'. Then construct a triangulation 4 on @ so
that 7|, =7, for each ¢. Let Q2,=\[UJ,_, 2,] and
T { g, = T, be a triangulation of the remaining (nonsingular)
region.

In the next step, we describe the special singuilar functions
generated through ¥ q" * which mimic the original
singularities. We also explain how to directly compute
elemental stiffness matrices and elemental load vectors
without constructing any special singular functions:

Step 4. Computation of local stiffhess matrices and local
load vectors on the elements in singular regions:

(a) Let e be an element in a singular neighborhood 2,
and e* = (e) be the corresponding (curvilinear) element
in Q% Let &, be the usual elemental mapping function
(since we allow curved sides, it is of the biending type as used
in [36]) from a standard element E (see Section 3 for
details) onto the element ¢*. These mappings then induce
the singular elemental map @% from E onto the original
element e defined by @ =¥ " 'o ...
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(b) For the computation of the stiffness matrices and
the load vectors on elements e, apply the following rule:
(1} Use the singular clemental mappings, @2, if
ec [U;:, Q]
(2) Use the standard elemental mappings, @,, if
ec 2.

From Corollary 2.1, forec | J; _, ,, we have

| (VN VN - NN
:j AYNFUNF fag|[J(¥ ) NFNFY, (20)

where N =N} W  N*=4-0_"' and .4 is a standard
shape function on the standard element E. Thus, using the
singular elemental mapping in rule (1) of Step 4 is the same
as using the right-hand sides of (20). It is worth noting that
the shape functions, N,= A4/ (@) '=NP ' P , are
singular functions which mimic the singularity. N* and N}
are conventional shape functions constructed through the
conventional elemental mapping @.. and hence no special
quadrature coding is needed for the right-hand sides of (20).
They can be computed by any existing code. Actually
we neither construct any special functions for elemental
stiffness matrices and elemental {oad vectors on e = €2, nor
will we require these special functions in postprocessing.

Let us note that if ¥ q_‘ = @* is the conformal mapping
defined by (10}, for the singular elemental mappings @7,
WJ(®) is not bounded away from zero (ie., it does not
satisfy (2la} below). Nevertheless from Corollary 2.1,
[J(@™) 1s canceled out in the computation of the stiffness
matrices,

We require that these elemental mapping satisfy the usual
conditions used in the finite element method that lead to
conforming finite elements. That is, we will require that each
clemental mapping @, on ec[Q\J,_,2,] (@.- on
e*c [ _, QF7) satisfies the following technical condi-
tions [2, 20] so that they lead to conforming elements. Let
h be the maximum length of the sides of the curvilinear
element ¢”. Then the bijective mapping @.(s, ¢)=
(x,(s, 1), x5(5, 1)): E — e” satisfies

C < |J(@,)] < Crhh (21a)
[DPx) < ChP, |DPx,| < CH™, | Bl < &,

where k& is to be a positive integer

and f is a multi-index. (21b)
Let @ '(x,, x,) = (s{x,, x5}, Hxy, x,)}), then

|DEs| < Ch=", | DPt| < Ch~ ' for |8 =1. (21¢)
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If 4, and y, denote the vertices and sides of e”,
then &, !(A4,) and @ '(y,) are vertices and sides of E.
Moreover, if @, E—e;and @,  E—e;
and &, &; =y, where y has endpoints 4, and 4,

S (B @ ' (A,))

—dist(d' (B), @A), I=1,2.

i

then for any Bey, dist(®
(21d)

It is important to note that the auxiliary mappings
defined by (15) are lincar on the arc length. Thus, the
elements constructed from these standard elemental shape
function @, and singular elemental shape functions @7 are
conforming.

3. CONVERGENCE RATES

The set of all algebraic polynomials of (total) degree less
than or equal to p on E will be denoted by 2 ( E). By 22(E)
we will denote the set of all polynomials of degree less
than or equal to p in each variable on E. By %,(E) we
mean P E) if E=T and PE) if E=0, respectively.
Here T={(&n):|¢ <1 —q/\/i, Ognéﬁ} and Q=
{(&,m):—1<&<1, —1<y<1} are the reference triangle
and rectangle, respectively.

LemMa 3.1 LetQ,={z:|z—A,|<R,} " Qandec T,
Suppose ¥ is given by (10) with x> 1 and ve H'(Q). Let
b=0vo® . Then ]|, , </ max(l, 2 R2==1%) 3], ..

Proof. § |v|*dx=J.. [J(@*)] lvo @™ * dl = [, ap?*~ D
16> dE <o”RZF=V"||d]|g ... On the other hand, by
Corollary 2.1, |v[; ,=[0[] .., which completes the proof.

QED.

Let S,={ueHL(Q2):ul,-®,eP(E) for all elements
ee T}, where E is T or Q according as e is a triangular or
rectangular element. Then the p-version of the finite element
method is as follows: find an element 1, € §,, such that

Bu,, v)= F(v)

The dimension of 5, will be denoted by N, and will be called
the degrees of freedom. In the p-version of the finite element
method the triangulation is fixed and only the degree p of
the basis polynomials is increased. If u., e H L(Q) is the
solution then

for all ves,.

[l

p_uexHE:min "w“uexnb"
=Y

When MAM is used in the framework of the p-version, the
finite dimensional space S, consists of u € H },(22) such that

for all

ule‘j(pee'?ia(E] ECQO-J

ul o Pl e P(E) for all ec[U Qq:[.
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THEOREM 3.1. Consider problem (7)—(9). Assume all
singularities are due to a finite set of s corner or boundary
singular points A, with singular neighborhoods ., where
f=00nQ, ,andh=00nTI,ynQ2, 1<q<s Assume that in
the region , away from the singularity, u., satisfies,

[Iuex Elk.Qu = CDkk’a

k=12, .., for some fixed constants C and D.  (22)
Let ull—™ be the finite element solution obtained by
employing MAM with the auxiliary mappings ¥ 'z =%,
a,=m,w,, defined by (15) in the framework of the p-version
of the finite element method (if a, > 0 we also require that w,
be rational and that m, be chosen so that 2m w, is an
integer). Then

|i“;"""“j—uexﬂm(méCexp(—ﬁ VN (23)

where C and §§ are independent of p.

Proof. The proof of this theorem depends essentially on
the expansions (11)-(14) and (16)—(19) but otherwise is
similar to [ 6], and is omitted for brevity. Let us note that
if u., is analytic on £, then it satisfies (22). Q.ED.

In Section 2 MAM is described for the case when f=01in
the singular neighborhoods. But our method also applies in
the case when f'# 0. In such a case, auxiliary mappings may
not transform the exact solution u,, of (7)}-(9) to an analytic
function (see [67]), but can still enhance the rate of
convergence.

For example, consider a Poisson equation —Au = f on
the L-shaped domain with a corner angle of w,m = 3n/2 at
the origin (0,0) and homogeneous Dirichlet boundary
conditions. If fe H%(2), then the solution ., in 2, =

{(r,):0<0<3n/2, r<r,} can be written in the
form ([17])
U lr, 0)=3 a,r'®™ sin(2k6/3)
k=0
af3
+ Y ber®¥logrsin 2k6 + o(r, 8),  (24)

k=1

where ve H%(Q,), provided that 3(n+1)>1. Then
e € H*(Q,), where k,=3—¢ for an arbitrary positive
number & That is, k, < 2. On the other hand, if we choose
the auxiliary mapping defined by ¥ q“{é):ﬁm, ey, ON
Qx={(p,$):0<¢p<m p<r)’}, satisfies

2

Aﬁﬁex(i’ ﬂ) = {(Axuex)o ‘II; l)

d i
d—ilp“ (£}

= (—fo W 7 atp™ 1),
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where @ = 3. Thus, the shift theorem implies 4., is at least
in H*Q¥). See Example C of Section 4 for an example,
where MAM s applied to a nonhomogeneous Helmholtz
equation, giving excellent results.

In the remainder of this section we will extend MAM to
the h-p version of the finite element method. These results
can be applied to the above situations in which 4, is
smoother than u,, but not highly smooth, The following
lemma was proven in [9].

LEMMA 3.2, Let E=T or Q be the reference triangle or
rectangle. Suppose ue H*(E). Then there exists a family of
operators {#i,: H{E}— 2(E), p=1, 2, ...} such that for any
OD<r<k,

=7 (), < Cp~ " =7 Nl (25)
e — e O < Cp™ % 1 uli e
i k>3/2, xcE  (26)

where the constants C in (25) and (26) are independent of u
and p but depend on k. If ue Z(E), then T (u)=u.

Let 5 ={F"}, h>0, be a family of meshes "=
3«‘39[\);:19’;], such as those defined in Step3 of
Section 2. Suppose e” is either a curvilinear triangular or
rectanguiar element. Let k. denote the maximum side
length of

Let Sa=supldiam(B):B is a disk in e"({e"y* if
e < (U5~ £2,]1)}. We shall assume that the family g is
regular in the sense that there exist positive constants o, 1
independent of 7 * such that for any 7" 4, if we define
h=max . 4+ b then for all e" € 77,

1 b

&

& i

h < T =
— x4 =0
ho
Let
ShR)= {HEHB(Q):H!JO(p(ﬁe%(E) foralle*e 74,

Ul po@5e B(E)forall & el ) 9”;},

where E is Q0 or T according as e” is a curvilinear rec-
tangular element or triangular element. Then the A-p version
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of the finite element method with M AM consists (for a given (i) From the assumptions on @, i =u- P e H*(E).
p and h) of finding 1 & $%(Q) such that B(u), v) = F(v), for By (25) with r=1,

all ve SH(Q).
Let

2,(eM)={veP, weR(E)},

B(eM)={ve(P5)"ive Z(E)}, if e”c[ '

g=1

Let us recall that (@5) =¥ !

if e"cQ,

a7 e=Wa—z)—m @~z e (31)
SCp~* "V a—zlie

for ze#(E). (32)

] (i) o —zleesla—zl e+ 25, . fale for all

m
S

(E).

° @y ifall ¢" = Q2 and that (iv) By Theorem 3.1.1 of [12],

P E—e”and D £ - (e")* satisfy condition (24).

Let us define an operator =} from H*(e") onto 2,(¢") by

(1)
( )=, (1o Pa)o (P5)7"

for we H*(e"), if " c[U .Q]

inf |u—:z Clu
ot =2l < C

T (e @)@, for ueHMe"). ife" =y

{(v) By the assumptions on @ (P 4. for e e 7"} in
(21), we have for y < j< k that

||, < CH/ ™ ||, if e"egt, (33)
|t e < CRI = il ne i €T (34)
LEMMA 3.3. Let "€ . Suppose for all e"eT}, _ .
ue H*e"), and for all e*e T, li=uc ¥ 'e HY{(")*), (vi) Therefore by (i}-(v),

where ko and k. are = 1. Then we have

ro—1

h
||u_ﬂh(u)“1 [""<Cp —1 ||uukol

He—1
[l — ?T,};(U)ﬂ LS C F 4] kr(eh®

ho—1
|(u—mp(u))(x)| < C T ledl g, o4

if k>3, xee'ed},

by — 1
1 H“"k* (eh)*

ht
(= () x)] < C

if k>3 xeeed),

if e"eT!

if e*eg"

k
lu—mp{i)l o< Cop™ @70 3 A7 lullo
(27) i=

&
(sclp-”‘-“ S pi- ||a||,-,.fh,.)
i=n

p—1

SCFHMH;(!(J: if eted (33)

h;a—l
(SCF el g ohye if ef'efff;) (36)

(viil) For general k we use an interpolation argument
[5. 8]. The proof for the case when u=k (ie, k<p+1)is
similar to the above.

(30) (viii) (29)}-(30)follow asin [9]. QED.

Suppose u., has a singularity at A, so that uu|gqe

where po=min(ky, p+1) if e’ € T4, p,=min(k*, p+1) if H*(2,) and k< 2. Then, by a suitable choice of auxiary

e T ! I ug(p,)>3ande" e T4 (T "), then we can assume MApPing, ue, ‘P;l

Ko ; h
that m,(u)=u at all vertices of €.

Proof. As the proof is similar to that given in [9], we

is analytic or u.o¥ 'e H(QF),

where k¥ = 2.

THEOREM 3.2, Suppose “Z denotes the finite element solu-

only outline the main steps. For notational simplicity let /107 of the problem (7)-(9) obtained by applying the method

(k, )= (ko, o) or (k¥, u,), according as e,e T or T 1.

of auxiliary mapping with mappings ¥, defined in Step 2 of

Let us consider the case when = p+ 1 (e, k= p+1) and Section 2 in the framework of the h-p version of the finite

k is an integer:

(i) By (21)ife"e 7L (and by Lemma 3.1 and (21) if

e Ty

oo =7}y or < C 8= TR g

element method over a regular family of meshes 7. Then
}
”uex 714,”1 o

hro= 1 hra!
[CO kg—l “ucx“kg Qu+ z qul‘,_ “uex “k‘ 12‘]3

g =1
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where p,=min(p+ 1, kF), po=min(p+1,ky), Q=
.Q\[Uf’,=l Q,1, and for each ¢=0, 1, ..., 5, C, is a constant
independent of h and p.

Proof. We will proceed by modifying the proof of
Theorem 4.6 of [9] and by using Lemma 3.l and
Lemma 3.2. Suppose el e 7% e €T, &,Mne, =7 A,

and A, arc two endpoints of y.

(i) If k>3, then by Lemma 3.2, there exist Z,e 2(E,)
and Z,,, € #(E;) (E, and E, are ¢ither T or Q) such that

fig— 1

”ucx_zq[”:,eq,'gcq.’pk_,__l ”ﬁex Hk;,(’;{ (37)
4
so—1
”ucx_ZOm Hl,eum‘{‘- C()mp_ko'.—l Huex !lkg,eum (38)
zq!(Aj)=uex(Aj)=20m(Aj]’ j= 1:2= (39)

where z,,=Z 0 tD;;?' o ¥, and zy, = Zp, o P!

By using the techniques given in (Theorem 4.6 of [9] or
Theorem 4.1 of [8]), one can modify z,, and z,,, so that the
modified functions £, and Z,, satisfy (4.9} and Z,=7Z,,
on y. Repeat this correction for each side and then assemble
the modified functions to obtain ;€ $%. Then

lletex — 4::: I

o — 1

h B 3 hpq—l
-<.. COFH 0(Q0)+ Z Cq
g=1

pk,‘;—l

H";(Q;"):l.

(i) Ifk <32, then from the interpolation space argument
as shown in Theorem 4.2 of [&7] or Theorem 4.6 of [9] and
case (i), we can obtain E;’eSﬁ which satisfies the required
inequality. Q.ED.

Let us note that if f#0 then the computation of the
elemental load vector is influenced by the auxiliary mapping
¥, If ¥ is given by (15) then we have

[ 7o=] otz s
£ 22

“ q

4. NUMERICAL RESULTS

In this section we make some benchmark comparisons
between MAM for problems having a boundary singu-
larity and some of the best of the alternative methods.
These include finite difference, finite element, and singular
function methods. The Motz problem [28, 38] and both
homogeneous and nonhomogeneous Helmholtz problems
are included. A variety of formats are used to present the
results to facilitate later comparisons. The codes used in this
benchmark study are:
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« ELLPACK [32]. A second-order finite difference
method over an uniform mesh in both x and y. The equa-
tions are solved by the MULTIGRID MGO00 module, with
a MAX of 1025 X points and 513 Y points. This method is
used only on Example A. Since there is no adaptive mesh
refinement, the overall convergence rate for Example A is of
order one-half due to the singularity in the solution.

« PLTMGS6. Bank’s well-known code [11] uses a
sophisticated adaptive scheme for the mesh generation
using linear elements over triangles. The code has many
other interesting features including a multigrid solution
method. Tt is a research code intended to be efficient
primarily in accuracy, not in time. To improve its perfor-
mance the parameters ITMAX and ISPD were set to one.
It castly achieves its maximum second-order accuracy over
both example problems A and B.

+ ISBFM. This recent code {integrated singular basis
function method) is reported in [297. It uses singular basis
functions combined with biquadratic FEM basis {unctions
over an uniform mesh. A special feature of the code is that
the area integrals with singular contributions are reduced to
boundary integrals by means of a double application of the
divergence theorem. All results reported are reconstructed
from the paper. These results show that the method quickly
achieves the overall accuracy of the underlying FEM with
no singularity, but at the cost of dealing with the singular
functions, a set of Lagrange multipliers, and losing the
original banded structure of the matrix, This method (and
the related method [24, 26]) is essentially global, with the
singular functions having support over all elements,
Both [24, 26, 29] report severe problems with matrix con-
ditioning for larger numbers of singular functions. No times
were reported.

» FESOP. This code (finite element solution of partial
differential equations), locally developed over the last nine
years, uses siX node isoparametric quadratic elements over
triangles. The matrix is solved by an envelope method [15].
It uses an automatic mesh generation scheme based on an
a priori weighting function related to known singularities.
The code is highly efficient and an effort has been made to
tune the power of the weighting function to these particular
geometries. It easily maintains its third-order accuracy for
both Exampies A and B.

+ MAPFEM. This code (the method of auxiliary
mapping in the p-version of the finite element method),
developed for elliptic problems containing singuiarities, is
an implementation of MAM in the p-version of the finite
element method as described in Section 2.2 for | < p < 10. It
is a research code, currently requiring hand-generated
meshes. Since even the crudest mesh-with eight
clements—gives better performance that the best of the
others with thousands of elements, no effort has yet been
made to make it efficient in time or to further increase the
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p-degree. Work is underway for these features and also for
an automatic mesh generation scheme. While these example
problems all have only one singularity, MAPFEM s
written to handle an arbitrary number of singularities, each
with its own mapping region. This local nature of MAM is
another of its strengths.

Another promising recent approach, the p-version of the
hybrid-Trefftz method [21, 22], introduces local singular
functions, while avoiding losing the original banded matrix
structure by a special trcatment of the interelement
continuity conditions. It has the additional feature that
it can handle point loads. This approach is not examined
further here since it has been developed in the context
of plate-bending problems and hence there is no basis
for comparisen in the literature for the class of problems
studied in this paper.

Throughout this section, all measures of time are in
seconds, and all runs have been made on a VAX/VMS 6310.
For MAPFEM the absolute error in maximum norm is
obtained by evaluating the absolute error at 100 points per
element. We compared this approach with using 36 points
per element and found only small differences. We also
evaiuated the error along two radial lines at angles 0° and
45° from the positive x-axis and found, as expected, no large
errors near the origin. In Examples A and B for the com-
putation of the maximum error we used known approxima-
tions or solutions. In Example C no known results are
available for comparison. To determine the relative error in
the energy norm in Examples A, B, and C we use the
method in Chapter 4 of {36] which estimates the true total
energy by extrapolation using the three best computed total
energies. “with mapping” stands for the case when MAM is
applied and “without mapping” stands for the case when
MAM is not applied. ASM stands for the CPU time for
assembling the local stiffness matrices and load vectors and
SOL stands for the CPU time for factoring and solving the
algebraic system. According to Corollary 2.1, the column
(with mapping) should be the same as the column (without
mapping) in Table A.IV, However, our research computer
code, which is designed to cover general elliptic operators,
made unnecessary computations for the coeflicients ¢, and
g5, of Theorem 2.1, adding slightly to the time,

Our first benchmark is a classic Laplace equation
problem with a singular solution, known in the literature
[24-26, 28, 29, 33, 37, 38, 40] as the Motz problem, Exam-
ples in this section have essential boundary conditions. For
standard arguments to deal with essential boundary
conditions in finite element approximations, we refer to
[8, 14,36]. From arguments in [3, 4, 20] with suitable
regularity requirements on the boundary data, Theorem 3.1
5 valid for elliptic problems with essential boundary
conditions on parts of the boundary away from the singular
regions.
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ExaMpLE A (The Motz Problem). Let £ and I'; be the
domain and edges depicted in Fig. 4.1. Let us consider the
problem (7 (9} with the following data:

—Au=0 on 2,
_ {500 on I,
““l0 on [
du
6_=0 on Mulyvelufls.
H

For MAM we use an eight element mesh and two
refinements with 32 and 48 clements respectively. It should
be noted that the last refinement was chosen away from the
singularity. In Fig. 4.1, {r, 0)= (0.8, 0) when MAM is used
and (r, 0)= (0.5, 0) when MAM is not used. In Mesh II and
Mesh IIT (Fig. 4.2}, the radii of the semicircles are 0.8, 0.6,
0.3, respectively, when MAM is applied. On the other hand,
the radii are 0.8, 0.8 x(0.15), 0.8x(0.15)% respectively,
when MAM is not used. It is well known that such
geometric mesh refinement leads to optimal results. These
meshes are used for values of p, 1 € p< 10. For ELLPACK
an uniform mesh of size (N+1) by {2N+1) with
2* < N <2°is used (no figure). PLTMG6 is used with 56 to
6390 nodes with the case of 3198 nodes illustrated in
Fig. 4.3. FESOP is used with 73 to 15,303 nodes with the
case of 5167 nodes and 2500 clements illustrated in Fig. 4.4.
ISBFM is reported {29] over uniform meshes of size N by
2N with N=1, 2, 4, and 8 using biquadratic basis elements,
using two singular functions and an appropriate number of
Lagrange muitipliers (no figure).

For comparison with other methods, ELLPACK,
PLTMG6, ISBFM, and FESOP are applied to the Motz
problem. In [24, 26] an effort is made to give an extremely
accurate solution to the Motz problem for use as
benchmarks such as in this study. Solutions of the form

34
=Y b cos (I+1)0

=0

(40)

(~1,1} Ly Iy (1,1)

Ty FQ

I
(r, 0)

(~1,9) I {1,0) (1,0)

FIG. 4.1. The domain {2, a singular neighborhood £2,, 5,, and Mesh [
for MAPFEM.
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FIG. 4.2. Mesh II for MAPFEM (32 elements) and Mesh III for MAPFEM (48 clements).

are found by requiring the boundary conditions along
x=—1,x=1, and y=1 to be satisfied in the sense of least
squares, It is claimed that the maximum error on x=1is
5.47E-09. When attempting to replicate these results using
the values for b, found 1n [24, 26] along (1, y)for0< y <1
we found an error of over 1.5E-04 when compared with the
true value of 1= 500 along x = 1. Further study lead to the
discovery that the error had a pattern which suggested that
the coefficient b, was in error. Dividing b, by 10 improved
the results to an error of only 548E-09 along x=1 as
originally claimed. While the actual accuracy of these results
is apparently not known, the claim made in [26] that they
are “The most accurate solution of the Motz problem ever
pubiished (1987)” seems well justified. However, it should
be noted that Rosser and Papamichael in 1975 [33]
succeeded in finding a closed form solution to the Motz
problemn, using a succession of six conformal mappings. In
order to express this solution in a form suitable for com-
putations they reduced their expressions to the form {40)
but with 20 terms instead of 35 and numbers of significant
digits decreasing from 20 for b, to 4 for b,,. Thus their
solution is the most accurate known for small », but is less

accurate than (40) by several significant digits near the far
corners. Equation (40) with a recursion relationship for the
next cosine term, is easy to apply and is used as the true
solution for all maximum norm comparisons with the Motz
problem.

The results obtained by ELLPACK, PLTMG®6, and
FESOP are listed in Table AL For convenience over so
many codes, the comparison results are all computed in the
maximum norm. The convergence is of order 4, 2, and 3 for
these methods, respectively. The ELLPACK run, with over
a half million nodes in 10 s, shows the futility of brute force
techniques. The results for MAPFEM with Meshes |, 1I,
and IiT are given in Table A Il for both the absolute error in
the maximum norm and the relative ¢rror in the cnergy
norm. As was noted in Section 2.1, the energy norm is
equivalent to the H ' norm used in Theorems 3.1 and 3.2. In
Table A.TII the ordinary p method (without use of MAM is
applied over a geometric mesh refinement topologically
equivalent to Meshes I, I, and Il as detailed above. The
results are inferior as expected. Also in Table A.IlI, the
degrees of freedom {which are the same with or without
MAM) are given, and in Table A.IV the CPU times are

FIG. 43. Adaptive mesh for PLTMG6 with 3198 nodes for Example A (it is similar for Example B).
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FIG. 44. Adaptive mesh for FESOP with 2500 elements and 5167 nodes for Examples A and B.

given. In Fig 4.5 an overall comparison of the absolute
error in the maximum norm versus the degrees of freedom
is made between the results of ELLPACK, PLTMG®,
FESOP, and the MAM code MAPFEM using Meshes [, 1T,
and I1. The exponential convergence of Theorem 3.1 for the
energy norm is observed even in this case and the
improvements generated by the h-p method of Theorem 3.2
can be seen by comparing the MAM results over the three
meshes. Our best result, MAM with Mesh 11T and p= 10,
shows a relative improvement of over 10 orders of
magnitude. Its error of 2.22E-08 is determined by com-
parison with (40) which has a known lower error bound of
5.48E-09. Here it is not obvious which approximate solu-

1.00E+02

1.00£+01
1.00E+00
1.06E-01
1.00E-02
1.00E-03
1.00E-04
1.00E-05

1.00E-06

Time = 78.5 secs

Absolute Error in Maximum Norm

o
[&
\\\Tlmt: 435 sacs

Time = 233 secs

tion (MAPFEM or (40)) is better. The p=10 case with
Mesh IIT appears to be losing exponential convergence,
This could be explained by the above or an alternative
possibility is that an insufficient nurber of Gauss points (12
by 12 grid} were used for the required high order numerical
integrations when p = 12. Selected computational times are
included in Fig. 4.5 for all of the above methods. In Fig. 4.6
we compare the relative energy error versus the square root
of the number of degrees of freedom of MAPFEM over the
three meshes with the singular basis code ISBFM [29]
using two singular functions. The convergence of the three
MAPFEM results is clearly exponential, while the ISBFM
code is limited by the convergence rate of the underlying

Time = 10.0 secs

TIme = 291 socs

—O— ELLPACK
—o—= PLTMGE
——o— FESCP

—— MAPFEM: Mesh 1
—+— MAPFEM: Mesh 2

—— MAPFEM: Mash3

Tima = 6501 secs

1.00E-07 i
1.00E-08 ———— =TT} — T ]
10 100 1000 10000 100000 1060000

Number of Degrees of Freedom

FIG. 45, Overall comparisons for the Motz problem in maximum norm.
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TABLE A.l

Number of Nodes, CPU Time, and Maximum Errors for
PLTMGS6, ELLPACK, and FESQOP Applied to the Motz Problem

ELLPACK PLTMGE FESOP
Nedes Time Max. error  Nodes Time Max. error Nodes Time Max. error
153 0.01 2590 56 ld6 2092 73 058 1.29D+01
561 0.01 19.00 94 2.63 15.18 179 1.01 279D -00
2,145 002 1370 91 588 7.62 335 .52 544D -0I
8,385 0.10 983 382 1838 3% 657 150 9.74D—02
33,153 038 7.00 799 3207 1.50 1.277 529 260D -02
131,841 1.53 497 1591  85.66 .51 2,523 1255 9.20D—03
525,825 10.02 332 3198 160.27 0.34 5167 44.39 285D -03
6390 43498 0.13 10,259 141.52 1.10D~-03
15,303 29143 6.12D—-04

TABLE A.Il

The Absolute Error in Maximum Norm and the Relative Error
in Energy Norm for MAM

Abs, error in max. norm Rel. error in energy norm

p Meshl Mesh 1 Megh 111 Mesh | Mesh I Mesh IH
1 411D+01 7277D-00 4.77D-00  233D—01 9.25D-02 7.19D-02
2 498D400 LIBD—00 862D-01  502D-02 135D-02 9.00D-03
3 662D-01 105D-0! 8.10D-02 1.05D-02 219D-—-03 1.74D—03
4 144D—01 309D-02 105D-02 270D~-03 S515D-04 238D—04
5 380D-02 325D-03 756D-04 639D-04 891D-—-05 297D-05
6 676D—-03 750D—04 B842D-05 139D—-04 145D-05 342D-06
7 987D—04 945D—05 B883D-06 ° 323ID-05 257D--06 4.16D-—-07
8 216D—-04 134D-05 10OD-06 7.37D—-06 462D-07 483D—08
9 435D-05 185D-06 L11D-07 1.72D—06 - —

10 802D —06 267D-07 221D-08 370D Q7 — —

TABLE A.Ill

The Number of Degrees of Freedom and the Relative Error
in the Energy Norm When MAM Is Nor Applied

Degrees of freedom Rel error in energy norm

p Meshl Meshil Mesh Il Mesh 1 Mesh I1  Mesh II1
1 6 29 47 3.22D-01 270D-01 1.65D—0i
2 21 91 143 1.74D—01 1.55D-01 551D-02
3 40 161 247 125001 1.11D-01 2.83D—-02
4 67 263 399 9.73D—02 8.60D—-02 1.93D-02
5 107 397 599 7.98D—02 7.04D-—-02 1.51D-02
6 143 563 847 6.76D—02 596D—-02 1.28D—-02
7 196 761 1143 587D —02 517D-02 1.10D—02
8 255 991 1487 518D —02 4.56D—-02 967D -03
9 322 1253 1879 464D—02 408D-02 865D—03
10 397 1547 2319 420D —-02 3.69D-02 T7.83D-03

LUCAS AND OH

TABLE A1V
The CPU Time for the Motz Problem

With mapping Without mapping

p  MeshI Mesh I MeshIll  Mesh I Mesh IT Mesh 111
ASM 3 4.00 1479 18.38 3.64 12.38 17.50
SOL 3 0.82 299 4.69 0.82 2.99 4.69
ASM 35 8.50 3291 45,68 .17 3174 4510
SOL 5 243 10.87 17.13 243 10.87 17.13
ASM 8 2B30 11129 161.65 2806 10769 15920
SOL 8 1036 49.63 81.44 10.36 49.63  8l.44
ASM 9 4065 15836 237.06 4022 15652 23456
SOL 9 2037 7590 12103 20.37 7590  121.03
ASM 10 5665 22261 32551 5660 22015 321.80
SOL 10 2190 11005 17550 2190 11005 17550

Nore. ASM stands for the CPU time {or assembling the local stiffness
matrices and load vectors and SOL stands for the CPU time for factoring
and solving the algebraic system.

FEM basis functions just as in the case of PLTMG6 and
FESOP, There was uncertainty in the calculation of the
energy errors (using the extrapolation method) for p=>8
with MAPFEM on Meshes II and III so these are not
reported. In Fig. 4.7 we compare absolute accuracy in the
maximum norm versus time for ELLPACK, PLTMGS,
FESOP, and MAPFEM for the Motz problem. The curve
in the FESOP results is explained by a conversion from time
dominance of the matrix assembly to the more costly matrix
solution as » increases. While the three MAPFEM results
again clearly stand out and are impressive, the time resuits
given are nevertheless limited by the current state of the
MAPFEM code. We anticipate improvement here as
MAPFEM matures.

In the next two examples we consider Helmholtz equa-
tions containing singularitics: Example B and Example C
are about homogeneous and nonhomogenecous Helmholtz
equations, respectively. In Examples B and C, 2 and [, are
the same as those depicted in Fig, 4.1. Mesh I, Mesh I, and
Mesh I1I on £ are given in Fig. 4.1 and Fig. 4.2.

ExampLE B. Let us consider a homogeneous Helmholtz
equation containing a singularity:

—Au+u=90 on €2,
Smh(r)cos(@/Z] on 0Q-—-I,—1T
n= \/;
0 onrlg
%:: onl,
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1.00E+00

1.00E-01 -—0— |SBFM
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FIG. 4.6. Relative errors of finite element solutions for the Motz problem in energy norm.

Then this problem has a strong boundary singularity at in Table B.I. The p degree, degrees of freedom, and absolute

(0, 0) and the true solution is error for MAPFEM for Meshes I and IT1 are given in
_ Table B.I1. These results for the homogeneous Helmholtz

uir, 9) :Smh(” ) cos (6/2). (41) problemr after adjusting by the factor of f'?OO, are sim_ilar to

\/; the previous ones, so they are presented in less detail. The

results are summarized in Fig. 4.8 which shows that the
The absolute error in the maximum norm, number of convergence is exponential for MAPFEM, but algebraic for
nodes, and CPU time for PLTMG6 and FESOP are given PLTMG6 and FESOP. MAPFEM with eight elements and

1000

100 /

[wr]

—0— ELLPACK
=4 —=<—— PLTMGE

—C— FESOP

CPU Time

——— MAPFEM. Mash{

—— MAPFEM: Meshz

—— MAPFEM: Mesh3

0.1

1 | ! L 1 - i
0.01 e L L S ENMUS S R S —

100 1 0.01 9.0001 0.000001  0.00000001 1E-10
Absolute Error in Maximum Norm

FIG. 4.7. Accuracy versus time comparison for the Motz problem.
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.
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FIG. 48. Comparing solution methods for the homogeneous Helmholiz equation in maximum norm.

TABLE B.I

Nodes, CPU Time, and Maximum Errors for
PLTMGH6 and FESOP

PLTMG6 FESOP
Nodes Time Max. error Nodes Time Max. error
44 1.16 5.13D-02 77 066 254D-02
102 287 243D-(2 179 1.03  695D—03
195 6.90 138Dy 02 335 1.56 1.36D—03
398 13.28 743D-03 657 281 241D—-04
810 2058 347D-03 1,277 567 704D -05
1,590 6582 2.19D-03 2,523 1348 238D -05
3,191 14045 856D —04 5.167 4038  7.52D-06
6,395 38145 298D-04 10,259 12913 2.70D-06
15,303 2738 1.56D —06

TABLE R.I1
Maximum Errors for MAPFEM con Mesh I and Mesh 111

MAPFEM
p-degree Mesh | DOF Mesh ITT DOF
1 811D —-02 4 267D —02 36
2 1.93D—02 16 8.74D—03 120
3 595D-03 32 1.35D-03 212
4 1.10D—03 56 1.34D—04 352
5 1.89D —04 93 899D —06 540
6 197D 05 128 133D -- 06 76
7 201D -06 176 1.86D—07 1060
8 477D —-07 232 1.27D—08 1392
9 8.25D-08 296 6.48D—10 1772

296 degrees of freedom is better than the best of the com-
parison methods (FESOP) with 15,303 nodes by a factor of
19 while taking just over half the time. There are over two
orders of magnitude improvement achieved by going to
Mesh II1. The CPU times of MAPFEM for this problem on
Mesh T and Mesh IIT are 152.97 s and 599.66 s, respectively.

ExaMpLEC. Let wus consider a nonhomogeneous
Helmholtz equation containing a singularity:

—dutu=1 on £,
_ {500 onl,
o on Fy
du
a—:() on Nuryul,uis.
7 _

The relative errors in energy norm are listed in Table C.I.
In Table C.I, Mesh I, Mesh I, and Mesh III give the results
obtained by the p-version of the finite element method with
MAM on their respective meshes while Meshes 1, 2, and 3
refer to the p-version without mapping. No comparison
runs are made for this example since the solution is
unknown. The relative errors in energy versus the square
root of the degrees of freedom (as given in Table A.II1} are
plotted in Fig. 4.9 for MAM over Meshes I, T1, and 111 and
without mapping over Mesh 3. As was shown in [6], if
f#0, MAM can not completely remove the singularity
effect caused by irregular geometry or changes of boundary
data. However, in this particular problem, the interior angle
nw at (0, 0)is = and hence (k + 1/2)/w cannot be an integer
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FIG. 49. Relative errors of finite element solutions for the nonhomogeneous Helmholtz equation in energy norm.

TABLE C.I

The Relative Error in Energy Norm for the
Nonhomogeneous Helmholtz Equation

With mapping Without mapping

Mesh 1 Mesh 1! Mesh T1§ Mesh 1 Mesh 11 Mesh M1
1 251D-01 (36D—01 13D—01 216D—01 LOD—01 1.01D—0
2 652D-02 306D—02 312D-02 105D—01 154D-02 3.50D-02
3 L75D-02 646D-03 528D—-03 742D—02 178D 02 1.73D—02
4 3177D-03 10ID-03 785D—04 565D—02 1.12D—02 L12D -0
5 687D-04 (22D-04 916D-05 462D—02 875D—03 8.75D—03
6 110D-04 159D-05 134D-05 391D-02 7.33D—03 7.33D—03
7192D-05 227D-06 130D—-06 340D—02 634D—03 6.34D—03
8 421D-06 356D-07 257D—07 300D—02 3559D_03 559D—03
9 986D-07 100D—07 473D-08 2.69D—02 500D—03 500D-03

TABLE C.I1

The CPU Time for —du+u=1lonQ=[—1,1]x[0,1]

Without mapping

Mesh I Mesh 111

With mapping
p Meshl Mesh Il Mesh II1 Mesh I
ASM 5 3106 13960 17245 19.66
ASM 8 10655 40636 507.63 55.66
ASM 9 15300 56834 70661 79.53

116.26
302.85
414.43

147.63
403.03
548.60

581/108/2-10

for any integer k. Thus, no terms in the asymptotic expan-
sion of u,, contain log r (see, [17]). Therefore, MAM can
transform the singular solution u,,| Qo L0 2n analytic
function on &) a0 Thus, MAM gives rise to exponential
convergence as one can observe from Fig, 4.9.

Il @: Q% — 2 is an auxiliary mapping, then

JL uy d9=ﬂ9, ()i d*,

Because of the additional computation of the Jacobian
[/(@)| in the above equation, for Helmholtz equations, the
CPU time when MAM is used is larger than that when
MAM is not used. One can see the difference in Table C.1L
Of course, SOL for this example is the same as those in
Table A TIL

5. CONCLUDING REMARKS

The method of auxiliary mapping has been shown to
converge exponentially for the Laplace and Helmholtz
equations with several corner and boundary singularities.
An additional convergence result has been obtained for the
h-p version of the finite element method. Benchmark studies
have been made comparing MAM with the finite difference
code ELLPACK, the adaptive fintie element codes
PLTMG6 and FESOP both in accuracy and time, and the
singular element code ISBFM in accuracy. For the Motz
problem (Example A) even our simplest mesh with eight
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elements gives an absolute error in the maximum norm of
almost eight orders of magnitude improvement (from 500 to
8.0E-06) in 79 5, while denser meshes give over two addi-
tional orders of improvement. The latter result {2.0E-08} is
at least very close to the most accurate solution known to
the Motz problem [24, 267, Finally the method, as we have
implemented it, is straightforward to apply to new problems
and has an essentially local nature. While it is currently fast
for a given accuracy compared to other methods, no effort
so far has been made to optimize it. As mapping methods for
singular problems grow more popular we anticipate the
development of optimized mapping codes that will further
increase the competitive advantage of this family of
methods.
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